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LETTER TO THE EDITOR 

Renormalisation group treatment of finite size scaling with E 

expansion 

A M Nemirovsky and Karl F Freed 
The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA 

Received 12 December 1984 

Abstract. The use of renormalisation group techniques away from the critical point is 
shown to enable the calculation of finite size scaling corrections to scaling functions with 
&-expansion methods. We consider the N-vector 44 theory for a layered geometry with 
periodic boundary conditions and evaluate the correlation function, susceptibility, correla- 
tion lengths and shift in the critical temperature to order E. 

Finite size effects on phase transitions are of considerable current interest both theoreti- 
cally and experimentally. (A good review of the subject is given by Barber (1983).) 
Different geometries can be considered, e.g., a completely finite system in d dimensions 
or a system infinite in one (or d - 1 )  dimensions but finite in the other d - 1 (or one) 
dimensions, etc. Boundary conditions (periodic, antiperiodic, free surfaces, etc) must 
be specified for a given geometry. In this work we illustrate the general theory with 
a d-dimensional layered geometry which is infinite in d - 1 dimensions, is of thickness 
L in the remaining dimension, and has periodic boundary conditions. 

The finite size scaling hypothesis (Fisher 1971, Fisher and Barber 1972) is widely 
used to extrapolate results from finite or partially finite systems to the thermodynamic 
limit. This hypothesis states that in the vicinity of the bulk critical temperature c, 
the behaviour of the finite system can be described in terms of the dimensionless 
scaling variable y = Lt”, where t = ( T  - c)/ is the reduced temperature, Y is the 
usual d-dimensional critical exponent, i.e. 6 -  t-” where 6 is the correlation length of 
a system of infinite extent, and L is the characteristic length scale for the finite size of 
the system. For a layered geometry L is just the single layer thickness. Among other 
effects the finite size produces a shift in the critical (or pseudocritical) temperature 
from T: to Tt. The ‘shift’ exponent A describes the L dependence of this shift by 

r- T , L -  L - ~ ,  L+cO. 

The &-expansion method is one of the most powerful renormalisation group tech- 
niques used to study critical phenomena in infinite systems (see e.g. Amit 1978). It 
has more recently been extended to semi-infinite systems (Symanzik 1981, Diehl and 
Dietrich 1981, Nemirovsky and Freed 1985 and references therein). Hence, it is 
important to generalise this technique for finite size systems. However, it has been 
argued (BrCzin 1982) that finite size scaling functions are well defined for E > 0 but 
become singular as E + O+, thereby apparently precluding the possibility of evaluating 
the finite size scaling functions by &-expansion methods. 
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In this letter we show that, as long as L t ” b  1, the E expansion is well defined. 
Calculations are performed for the N-vector d4 field theory with a layered geometry 
and periodic boundar- conditions. We explicitly evaluate the correlation function, 
susceptibility, and parallel and perpendicular correlation lengths to first order in E. 

The scaling hypothesis is satisfied for d 6 4  and scaling functions are given to O ( E ) .  
Also, it is found that, away from the critical region and in the L + CO limit, finite size 
corrections become exponentially small as suggested by previous calculations on 
various models (Ferdinand and Fisher 1969, Barber and Fisher 1973, Barber 1973, 
1977). In addition, the critical exponents are those of an infinite d-dimensional system, 
as long as Lt b 1. When this condition is violated the perturbative series expansion 
breaks down, becoming an expansion in a large dimensionless parameter ( L f Y ) - ’ .  The 
shift in the critical temperature to O ( E )  is calculated and yields A = 2. 

Bounded field theories are also of current interest in areas such as particle physics 
(Bernard 1974, Weinberg 1974, Dolan and Jackiw 1974) and general relativity (Toms 
1980, Birrell and Ford 1980), and some results obtained by these authors have been 
utilised in this work. 

We use an N-component scalar 44 theory for a d-dimensional layered system of 
infinite extent in d - 1 dimensions and of thickness L along the remaining dth direction. 
Periodic boundary conditions are applied in the dth dimension, i.e., the local order 
parameter 4 ( p ,  z) satisfies 

4b9 z )  = 4 b ,  z +  L ) ,  (1 )  

where p is a ( d  - 1)-dimensional vector perpendicular to the thickness. The Landau 
free energy functional for the model is given by 

where the parameters to and go are the bare reduced temperature and coupling constant, 
respectively. 

Since 4(p ,  z) is periodic in the interval [0, L ] ,  it can be expanded in a Fourier series 

with k the Fourier variable conjugate to p, and K~ = 2 r j /  L. Feynman rules for the 
perturbation expansion are the usual ones for the full space (Amit 1978), apart from 
the replacement (Bernard 1974) 

kz + Kj,  K~ = 2 r j /  L, (4b) 

(4c) 
These rules are used to evaluate the connected two-point function G‘” (correlation 

( 2 r ) d s d ( k , + k z + .  . .)+ Ls,,,+,,>+. . . ( 2 7 r ) d - ’ S d - ’ ( k l + k 2 + .  . .). 

function) to first order in go as 

G(’)(k, K ~ ,  t )  =(k2+~f+t0)-I-ggo[(N+2)/12]r(d/2)r(1 - d / 2 ) ( k ‘ + ~ f + t ~ ) - ~  

- g o [ ( N + 2 ) / 3 ] ( 2 r ) d - z r - ’ / 2 T ( ~ -  d / 2 ) r ( d / 2 )  sin(;- d / 2 ) ~ L ~ - ~  

x f , , , - d / , ( L f ~ ’ 2 / 2 n ) ( k 2 +  K f +  to)-*+ o(gi), ( 5 )  



Letter to the Editor L321 

where g o = g , S d / ( 2 r ) d ,  S d  = 2 r d l 2 / r ( d / 2 ) ,  and we have used (Birrell and Ford 1980) 

with 

The divergence of the correlation function G(2' in equation ( 5 )  is the same as that 
of the full-space theory. In fact, it has been shown that, at least up to two loops, the 
theory we are considering here is rendered finite by the full-space normalisation 
constants (Kislinger and Morley 1976), i.e. the divergences are the same as those for 
the infinite system. 

The renormalised field, coupling constant and temperature are given as usual by 

4R = . Z ; I / ~ ~ ,  g = zglp -qo, t = 2;I to ,  (7) 
with p a parameter having dimensions of temperature that is used to define a dimension- 
less coupling constant. The functions 2 are given by (Amit 1978) 

Z,=l+O(g'), N + 8  
6.5 

2, = 1 + - g + 0 ( g 2 ) ,  
N + 2  

6.5 
2, = l+-g+O(g2) .  

These renormalisation constants enable us to define the renormalised correlation 

(9) 

function by 

Gf'( t, g )  = 2;' G"'( Z,t, Z8gpE/2) .  

Combining (7)-(9) with ( 5 )  gives 

Gf'= ( k 2 +  K;+ t ) - '  - g [ (  N +2)/ 12]t(k2+ ~ f +  t)-' In( t / p )  

- g [ (  N+ 2)/3]2(2r/ t ' / 'L)' t (k2Kf+ t)-2f-l/2( t"2L/2r) + O ( g 2 ) ,  ( I O )  

The susceptibility x and correlation lengths ll1 and 5, are readily evaluated from 
where f-l12(a) is given by (6b) with a = -$. 

Gf' through 

x (  t, L )  = loL dz [ dd-'p Gf'(p, z) = Gf'(k = 0, K~ = 0), 

5 2 -  5" 0 dz j dd-lp lpI2Gf'(p, z) 
I1 - j," dz 5 dd-lp Gf'(p, z) ' 

1,' dz z2 5 dd-lp Gf'(p, z) 
" = j,' dz  I dd-'p Gf'(p, z )  * 

At the fixed point g* = [6/( N -t 8)ls + O( E ' ) ,  the renormalisation-group equation 
implies the scaling forms 

where the critical exponents y and Y are the d-dimensional bulk ones, i.e., 

1 1 N + 2  v =-+- - 
2 4 N + 8  & + 0 ( & 2 ) .  (13a, b) 

1 N + 2  
y = l + - -  N+8E+O(E2),  
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Equation (15a) implies that away from criticality ( t  > 0) and in the limit of very 
large thickness ( L +  CO), finite size corrections to the correlation function (equation 
(lo)), susceptibility and correlation lengths (equations (12) to (14)) are exponentially 
small. 

Combining (15b) with (10) or (12)-( 14) indicates that as Lt” + 0 the perturbative 
expansion is one in the large dimensionless parameter ( Lt”)-I, and the first-order 
contributions become arbitrarily larger than the zeroth-order ones. As long as Lt” 2 1 
the series are well behaved. However, had we considered a critical theory from the 
beginning, i.e., calculation and renormalisation at t = 0, as is usually done for infinitely 
extended systems, we would not have obtained meaningful results. 

Finally, using the Schwinger-Dyson equation together with (lo),  the shift in the 
critical temperature to O ( E )  is calculated to be 

t =--- 

Since the theory discussed in this letter is ill defined below t - L-I”, the result of 
equation (16), which predicts a t ,  < 0, should be taken with some caution. This point 
has been extensively discussed (Weinberg 1974) in the context of finite temperature 
field theory. We provide a more rigorous treatment of (16) in a forthcoming work 
giving an expanded discussion of finite size effects for a d-dimensional layered geometry 
with periodic and with antiperiodic boundary conditions. 

This research is supported by NSF grant DMR 83-18560 and has benefited from the 
use of MRL( NSF) facilities at the University of Chicago. We are grateful to Professor 
K Binder for his encouragement and Professors J D Bjorken and J L Rosner for useful 
discussions. 
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